

Acoustics Basics

- Definition of Sound: A small perturbation in a fluid from ambient conditions through which energy is transferred away from a sound source by progressive fluctuations of pressure (or sound waves).
- Can be expressed in terms of Pressure (e.g., PSI, Pascals, Bars, etc.)
- Conveniently expressed in terms of decibels (dB)

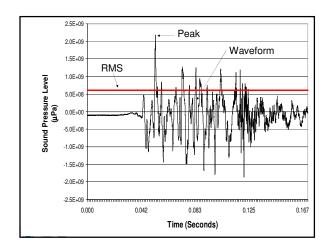
Acoustics Basics

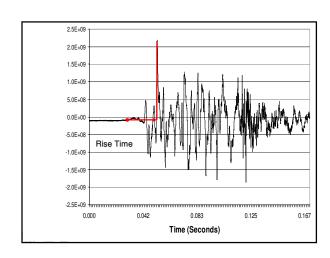
- · Decibel to Describe Sound
 - · A logarithmic measure of the sound strength
 - Base 10 Log function of the ratio of the pressure fluctuation to a reference pressure.
- Calculation of Sound Pressure Level (SPL)

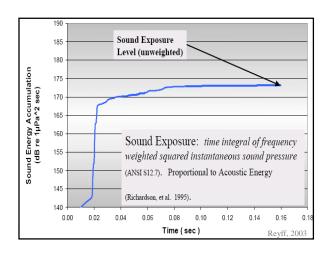
 $SPL = 10 Log (p/p_{ref})^2$ or $SPL = 20 Log(p/p_{ref})$

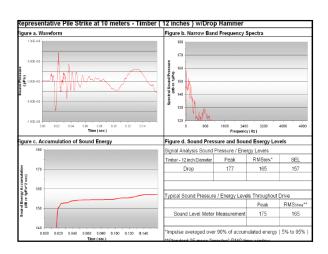
 $\underline{\text{where}}\ p_{\text{ref}}$ is the reference pressure:

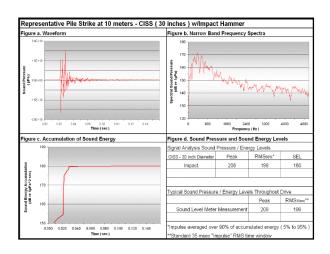
- $p_{ref} = 20 \mu Pa$, for air
- $p_{ref} = 1 \mu Pa$, for water

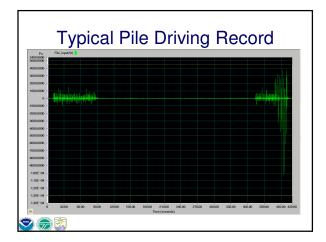



Acoustics Basics


- · Peak Pressure
 - Max absolute value instantaneous pressure <u>uPa</u>
- Root Mean Square RMS
 - Quadratic mean of the pressure <u>uPa</u>
- · Rise Time
 - Time between zero (background) and peak seconds
- Sound Exposure Level SEL
 - Time-Integrated Pressure Squared μPa2•sec

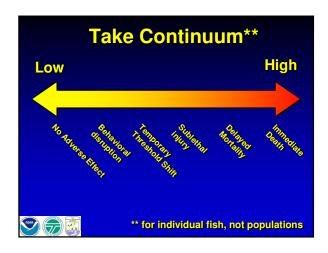






New Criteria for Underwater Noise and Fish

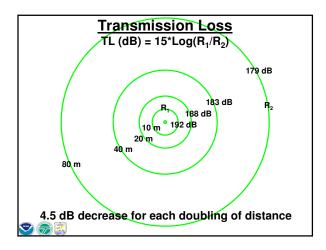
Fisheries Hydroacoustic Working Group (FHWG)


- •Federal Highway Administration
- ·National Marine Fisheries Service
- •US Fish and Wildlife Service
- •State DOTs (Caltrans, WSDOT, ODOT)
- ·Other resource agencies and technical experts
- •Formed in 2004
- •Contracted Dr. Mardi Hastings and Dr. Art Popper
- •Worked to establish interim thresholds
- •"Effects of Sound on Fish" (Hastings and Popper 2005)

Determining How Many Fish will be Affected

How do we use these criteria?

- 1. Calculate the distance from pile where effects are expected
- 2. Calculate area affected
- 3. If data on fish density, calculate number of fishes affected



Transmission Loss (TL)

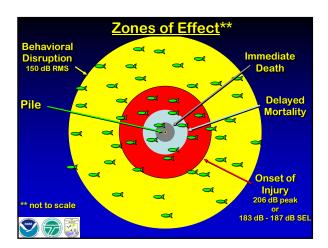
- Sound attenuates with distance from source
 - · Geometrical Spreading
 - Absorption/Scattering
- Practical) Spreading Loss Model
 - $TL(dB) = 15 Log (R_1/R_0) + \alpha R$
- Where:
 - TL = Transmission Loss in dB
 - $R_1 = Range$
 - R₀ = Range of known sound level
 - αR = Linear Absorption and Scattering Loss (alpha value not agreed upon so ignore for now)

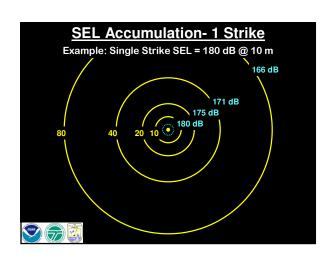
 $TL(dB) = 15 Log (R_1/R_0)$

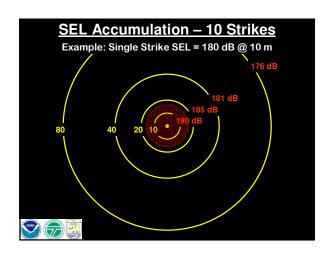
Computing Received SEL (Exposure)

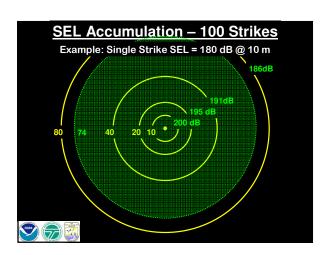
- · Depends upon:
 - Number of pile strikes
 - Distance from pile (transmission loss)
 - · Behavior of fish
 - · Tissue recovery
 - Cumulative SEL = Single Strike SEL + 10Log(# Strikes)
 - Example: Cum. SEL = 180 dB_{SEL} + 10Log(200 strikes) = 180 dB + 23 dB

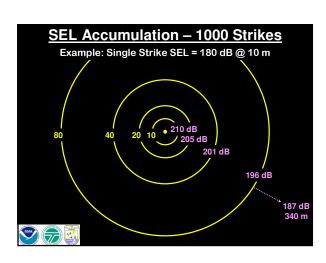
Underwater Sound Criteria

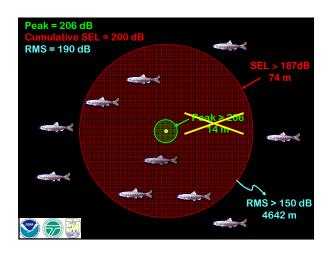

Received levels

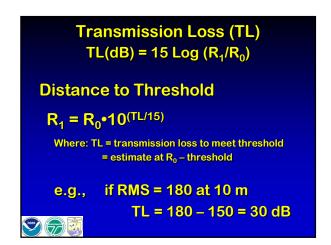

10 meters – no biological significance Independent of distance

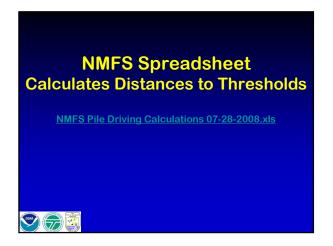

Applicable to all fishes ESA and EFH

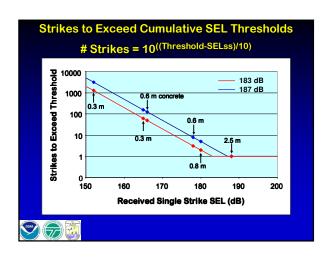


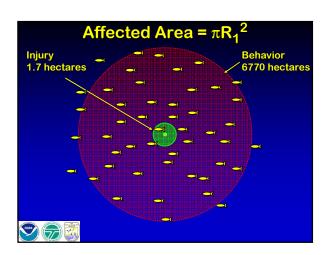

Underwater Sound Criteria (cont'd) Onset of Injury expected if either: • Cumulative SEL - Size dependent • Fishes ≥ 2 grams = 187 dB (re: 1µPa² • sec) • Fishes < 2 grams = 183 dB (re: 1µPa² • sec) • Peak pressure ≥ 206 dB (re: 1µPa) Adverse behavioral disruption expected if: • RMS pressure ≥ 150 dB (re: 1µPa)

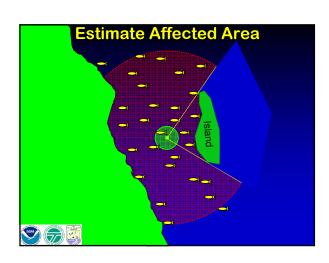


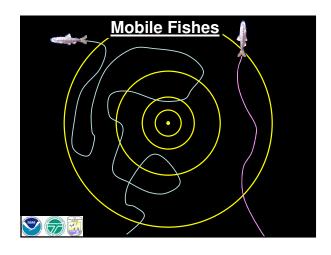


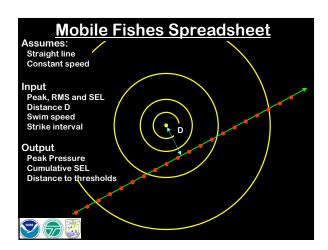


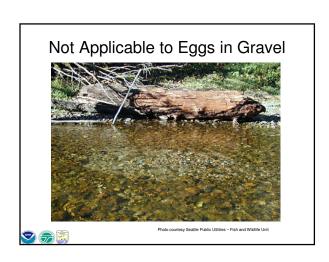












Other Species?

- · Marine Mammals?
 - · 180 dB RMS (Orcas)
 - 190 dB RMS (seals/sea lions)
- Marbeled Murrelets (marine diving birds)
 - 180 dB Peak
 - 150 dB RMS

What Does This Mean for WSDOT Projects?

What this means for WSDOT projects

- How do I know how many strikes?
- How do I know what are typical sound levels?
- What are some of the differences with pile diamters/types?

Calculating SEL

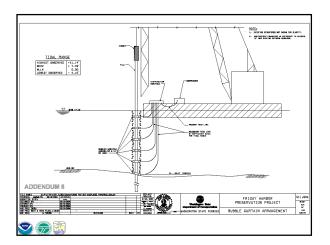
		•			
Location	Pile Diameter (inches)	Number of Piles	Number of Strikes/Pile	Number of Strikes/Day	
Cape Disappointment Boat Launch Facility	12	1	191 ²	191 ²	
			147 - 2712	816 ²	
SR 240 – Yakima River	ma River 16 2	2	183 - 419	602	
		3	404 - 460	1,295	
Beinheider Jahred Come Transie al	ridge Island Ferry Terminal 24	2	534 - 552	1,086	
Baintridge Island Perry Terminal		3	432 - 639	1,578	
Eagle Harbor Maintenance Facility	24	7	11 - 30	134	
Friday Harbor Ferry Terminal		1	326	326	
	24	- 1	477	477	
		- 1	203	203	
		1	130	130	
		1	271	649	
		1	378		
	30	- 1	78	78	
	30	- 1	114	114	
Assessment Communication	36	2	323 - 442	765	
Anacortes Ferry Terminal	.36	4	341 - 675	2,494	
Mukilteo Test Pile Project	36	4	73 - 227	682	

What this means for WSDOT projects

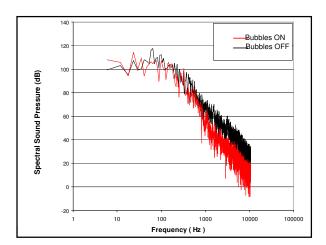
Pile Diameter	dB PEAK	dB RMS	dB SEL
12-inch Steel	203 - 208	188 - 191	171 - 175
24-inch Steel	204 - 211	190 - 198	201 - 206
30-inch Steel	212 - 215	195 – 196	186 - 187
36-inch Steel	210 - 214	197 - 201	182 - 186
Wood Piles	180	170	160
24-inch Concrete Piles	184 - 192	173 - 176	163 - 174
H- Piles	190	165 - 175	155

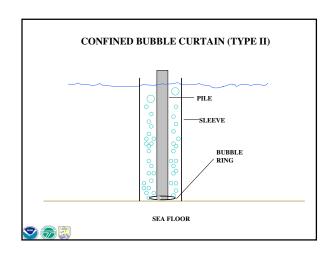
^{* -} All values are 10 meters from the pile. Wood, Concrete and H-pile data from Pile Driving Compendium

UNDERWATER MINIMIZATION STRATEGIES FOR PILE DRIVING



MINIMIZATION STRATEGIES


• Bubble Curtain – 0 dB to 23 dB reduction



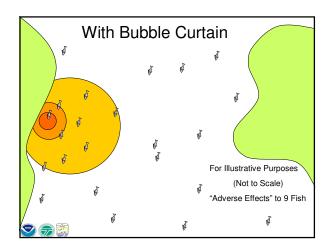
MINIMIZATION

- Bubble Curtain
- Sleeves 10 dB to 23 dB reduction
 Cost slightly higher than single ring bubble curtain

MINIMIZATION

- Bubble Curtain
- Sleeves
- Pile Cushions





MINIMIZATION

- Bubble Curtain
- Sleeves
- Pile Caps
- Dry Coffer Dams
- Timing
- Driving above the MHHW line
- Using Vibratory Hammers

WHAT'S NEXT

· Research

- NCHRP research ongoing looking at effects on fish
- WSDOT Research \$ and FHWA Pooled Fund to look at modified TNAP at Vashon Terminal
- · SR 520 Test Pile project

